«Мы начали самостоятельный полет. Есть прочные контакты с измерительными пунктами в Медвежьих озерах и Уссурийске. Раскрылись солнечные батареи, нашли Солнце, заняли стабилизированное положение и имеем положительный энергобаланс»… Так начал общение с прессой глава НПО им. Лавочкина Виктор Хартов 18 июля вскоре после запуска «РадиоАстрона». После этого стало ясно: старт прошел успешно, и у многих любителей астрономий эта радостная новость едва ли не вызвала слезы на глазах.

Почти четверть века, двадцать с лишним лет Россия не выводила в космос астрономические инструменты!

История «Радиоастрона» имеет полувековую историю. Идея вывода в космос радиотелескопа принадлежит выдающемуся радиоастроному, ученику И. С. Шкловского Николаю Семеновичу Кардашеву. Вначале он предлагал создать огромную надувную антенну, но к тому времени как проект получил официальный статус (произошло это в 80-е годы), размер телескопа существенно уменьшился. В 90-е годы проект был фактически заморожен, в последнюю декаду, несмотря на увеличение финансирования, запуск неоднократно откладывался. И вот теперь «Радиоастрон» на орбите!

Впрочем, пока радоваться преждевременно, ведь сегодня, 22 июля, должна раскрыться антенна радиотелескопа. Затем «Радиоастрон» будет наблюдать Луну для калибровки. Затем будут калиброваться системы ориентации. Это будет делаться путем измерения одного из ярких источников радиоволн. В целом аппарат будет работать от двух до трех месяцев в тестовом режиме. И только потом приступит к научным наблюдениям.

Здесь может последовать вопрос: а зачем выводить в космос радиотелескоп, ведь это не даст инструменту преимуществ по сравнению с наземными аналогами, как, например, в случае с оптическими телескопами? Ответ прост: все дело в базе. «Радиоастрон» - это телескоп, предназначенный работать в связке с наземными радиотелескопами. Вместе они создадут сверхдлинную базу, примерно в 30 раз большую, чем существующие сейчас, ограниченные диаметром Земли. Это значит, что с помощью «Радиоастрона» мы сможем исследовать Вселенную с угловым разрешением в одну миллионную угловой секунды!

Это позволит детально изучить природу источника энергии в ядрах активных галактик, исследовать эволюцию компактных внегалактических источников радиоизлучения, получить новые данные о пульсарах, микроквазарах и радиозвездах, наконец, сделать существенный вклад в фундаментальную астрометрию. Одним словом, даже сегодня, спустя полвека после первой идеи космического радиотелескопа, «Радиоастрон» представляет собой уникальный инструмент, не имевший и не имеющий аналогов в мире.

Какое счастье, что коллектив не разбежался в лихие 90-е и продолжил работу в тяжелые 2000-е. И как же здорово, что «Радиоастрон» все-таки запущен! Теперь - следующий шаг. Сплюнем три раза и подождем раскрытия антенны. А там глядишь, и подоспеют первые научные результаты. Они нам очень нужны, а особенно - молодому поколению наших ученых.

18 июля 2011 года. Космодром «Байконур». Ракета «Зенит» с разгонной ступенью «Фрегат» выводят на орбиту радиотелескоп «Спектр-Р» или «Радиоастрон»

18 июля 2011 года. Космодром «Байконур». Ракета «Зенит» с разгонной ступенью «Фрегат» выводят на орбиту радиотелескоп «Спектр-Р» или «Радиоастрон»

18 июля 2011 года. Космодром «Байконур». Ракета «Зенит» с разгонной ступенью «Фрегат» выводят на орбиту радиотелескоп «Спектр-Р» или «Радиоастрон»

18 июля 2011 года. Космодром «Байконур». Ракета «Зенит» с разгонной ступенью «Фрегат» выводят на орбиту радиотелескоп «Спектр-Р» или «Радиоастрон»

18 июля 2011 года. Космодром «Байконур». Ракета «Зенит» с разгонной ступенью «Фрегат» выводят на орбиту радиотелескоп «Спектр-Р» или «Радиоастрон»

В связи с удачным запуском поздравления принимает академик Н. С. Кардашев. Фото: Владимир А. Самодуров

Интересная статья о запуске «Радиоастрона» опубликована в газете

Откуда посмотреть звезды?

Вполне резонный вопрос – зачем размещать телескопы в Космосе?. Все очень просто – из Космоса лучше видно. На сегодняшний день для изучения Вселенной нужны телескопы с такой разрешающей способностью, которую на Земле получить невозможно. Именно поэтому телескопы и запускают в Космос.

Разные типы зрения

У всех этих устройств разное «зрение». Одни виды телескопов изучают космические объекты в инфракрасном и ультрафиолетовом диапазоне, другие - в рентгеновском. В этом и кроется причина создания все более совершенных космических систем для глубокого изучения Вселенной.

Hubble Space Telescope

Hubble Space Telescope (HST)
Телескоп «Хаббл» - это целая космическая обсерватория на околоземной орбите. Над его созданием работали NASA и Европейское космическое агентство. Телескоп был запущен на орбиту в 1990 году и на сегодняшний день является самым крупным оптическим устройством, ведущим наблюдение в ближнем инфракрасном и ультрафиолетовом диапазоне.

За время работы на орбите «Хаббл» отправил на Землю более 700 тыс. снимков 22 тыс. разных небесных объектов – планет, звезд, галактик, туманностей. Тысячи астрономов с его помощью вели наблюдения за происходящими во Вселенной процессами. Так, при помощи «Хаббл» было обнаружено множество протопланетных образований вокруг звезд, получены уникальные снимки таких явлений, как полярные сияния на Юпитере, Сатурне и других планетах, очень много другой бесценной информации.

Chandra X-ray Observatory

Chandra X-ray Observatory
Космический телескоп «Чандра» был выведен в Космос 23 июля 1999 года. Его основная задача – наблюдение за рентгеновским излучением, исходящим из космических областей с очень высокой энергией. Такие исследования имеют огромное значение для понимания эволюции Вселенной, а также изучения природы темной энергии - одной из самых больших тайн современной науки. На сегодняшний день в Космос запущены десятки устройств, проводящих исследования в рентгеновском диапазоне, но, тем не менее, «Чандра» остается наиболее мощным и эффективным в этой области.

Spitzer Космический телескоп «Спитцер» запущен NASA 25 августа 2003 года. Его задача – наблюдение за Космосом в инфракрасном диапазоне, в котором можно видеть остывающие звезды, гигантские молекулярные облака. Земная атмосфера поглощает инфракрасное излучение, в связи с этим такие космические объекты практически невозможно наблюдать с Земли.

Kepler Телескоп «Кеплер» был запущен NASA 6 марта 2009 года. Его специальное предназначение - поиск экзопланет. В задачи телескопа входит наблюдение за яркостью более чем 100 тыс. звезд на протяжении 3,5 лет, в течение которых он должен определить количество планет, подобных Земле, находящихся на пригодном для возникновения жизни расстоянии от своих солнц. Составить подробное описание этих планет и форм их орбит, изучить свойства звезд, обладающих планетарными системами и многое другое. На сегодняшний день «Кеплер» уже выявил пять звездных систем и сотни новых планет, 140 из которых по своим характеристикам похожи на Землю.

James Webb Space Telescope

James Webb Space Telescope (JWST)
Предполагается, что когда «Хаббл» отслужит свой срок, его место займет космический телескоп JWST. Он будет оснащен огромным зеркалом диаметром 6,5 м. Его цель – обнаружить первые звезды и галактики, появившиеся в результате Большого взрыва.
И даже трудно представить, что он увидит в Космосе и как это повлияет на нашу жизнь.

Получить невозможно. Именно поэтому телескопы и запускают в Космос.

У всех этих устройств разное «зрение». Одни виды телескопов изучают космические объекты в инфракрасном и ультрафиолетовом диапазоне, другие — в рентгеновском. В этом и кроется причина создания все более совершенных космических систем для глубокого изучения .

Космический телескоп «Хаббл» (Hubble Space Telescope)

Телескоп «Кеплер» (Kepler)

Телескоп «Кеплер» был запущен NASA 6 марта 2009 года. Его специальное предназначение — поиск экзопланет. В задачи телескопа входит наблюдение за яркостью более чем 100 тыс. звезд на протяжении 3,5 лет, в течение которых он должен определить количество планет, подобных , находящихся на пригодном для возникновения жизни расстоянии от своих солнц. Составить подробное описание этих планет и форм их орбит, изучить свойства звезд, обладающих планетарными системами и многое другое. На сегодняшний день «Кеплер» уже выявил пять звездных систем и сотни новых планет, 140 из которых по своим характеристикам похожи на

Есть такой механизм - телескоп. Нужен для чего он? Какие функции выполняет? В чем помогает?

Общая информация

Наблюдение за звёздами было увлекательным занятием ещё с давних времён. Это было не только приятное, но и полезное времяпрепровождение. Первоначально человек мог наблюдать за звёздами только своими глазами. В таких случаях звезды были всего лишь точками на небесном своде. Но в семнадцатом веке был изобретён телескоп. Нужен для чего он был и зачем сейчас применяется? В ясную погоду с его помощью можно наблюдать за тысячами звёзд, внимательно рассматривать месяц или просто наблюдать за глубинами космоса. Но, допустим, человека заинтересовала астрономия. Телескоп поможет ему наблюдать уже за десятками, сотнями тысяч или даже миллионами звёзд. В таком случае всё зависит от мощности используемого прибора. Так, любительские телескопы дают увеличение в несколько сотен раз. Если говорить о научных приборах, то они могут видеть в тысячи и миллионы раз лучше, чем мы.

Виды телескопов

Условно можно выделить две группы:

  1. Любительские приборы. Сюда относят телескопы, увеличительная способность которых составляет максимум несколько сотен раз. Хотя существуют и относительно слабые приборы. Так, для наблюдения за небом можно купить даже бюджетные модели со стократным увеличением. Если хотите купить себе такой прибор, то знайте про телескоп - цена на них начинается от 5 тысяч рублей. Поэтому позволить себе заниматься астрономией может практически каждый.
  2. Профессионально-научные приборы. Здесь присутствует деление на две подгруппы: оптические и радиолокационные телескопы. Увы, первые обладают определённым, довольно скромным запасом возможностей. К тому же при достижении порога в 250-кратное увеличение из-за атмосферы резко начинает падать качество картинки. В качестве примера можно привести известный телескоп "Хаббл". Он может передавать четкие картинки с увеличением в 5 тысяч раз. Если же пренебречь качеством, то он может улучшать видимость в 24 000! Но настоящее чудо - это радиолокационный телескоп. Нужен для чего он? Ученые с его помощью наблюдают за Галактикой и даже за Вселенной, узнавая про новые звёзды, созвездия, туманности и иные

Что даёт человеку телескоп?

Он является билетом в поистине фантастический мир неизведанных звездных глубин. Даже бюджетные любительские телескопы позволят совершать научные открытия (пускай даже и сделанные ранее одним из профессиональных астрономов). Хотя и обычный человек может многое сделать. Так, было ли известно читателю, что большинство комет открыли именно любители, а не профессионалы? Некоторые люди делают открытие даже не один раз, а много, называя найденные объекты так, как им захочется. Но даже если не удалось найти ничего нового, то каждый человек с телескопом может почувствовать себя значительно ближе к глубинам Вселенной. С его помощью можно любоваться красотами и других планет Солнечной системы.

Если говорить о нашем спутнике, то можно будет внимательно рассмотреть рельеф его поверхности, который будет более живой, объемный и детализированный. Кроме Луны, можно будет полюбоваться и Сатурна, полярной шапкой Марса, мечтая о том, как на нём будут расти яблони, красавицей-Венерой и выпаленным Солнцем Меркурием. Это поистине восхитительное зрелище! С более-менее мощным прибором можно будет наблюдать за переменными и двойными массивными огненными шарами, туманностями и даже ближайшими галактиками. Правда, для обнаружения последних всё же понадобятся определённые навыки. Поэтому нужно будет прикупить не только телескопы, но и учебную литературу.

Верный помощник телескопа

Кроме этого прибора, его владельцу полезен будет ещё один инструмент изучения космоса - карта звездного неба. Это надёжная и верная шпаргалка, помогающая и облегчающая поиск желаемых объектов. Ранее для этого использовались бумажные карты. Но сейчас их успешно заменили электронные варианты. Они значительно удобнее в использовании, нежели печатные карты. Более того, это направление активно развивается, поэтому значительную помощь владельцу телескопа сможет оказать даже… виртуальный планетарий. Благодаря им быстро будет представлено по первому запросу необходимое изображение. Среди дополнительных функций такого программного обеспечения - даже предоставление любой вспомогательной информации, что может быть полезна.

Вот мы и разобрались, что собой представляет телескоп, нужен для чего он и какие возможности предоставляет.


Как появились телескопы?

Первый телескоп появился в начале XVII века: сразу несколько изобретателей одновременно придумали подзорные трубы. Эти трубы были основаны на свойствах выпуклой линзы (или, как её ещё называют, вогнутого зеркала), выполнявшей в трубе роль объектива: линза собирает в фокус лучи света, и получается увеличенное изображение, на которое можно смотреть через окуляр, находящийся на другом конце трубы. Важная для телескопов дата - 7 января 1610 года; тогда итальянец Галилео Галилей впервые направил подзорную трубу в небо - и именно так превратил её в телескоп. Телескоп Галилея был совсем небольшим, чуть больше метра в длину, а диаметр объектива был 53 мм. С тех пор телескопы постоянно увеличивались в размерах. По-настоящему большие телескопы, находящиеся в обсерваториях, начали строить в XX веке. Самый большой оптический телескоп на сегодня - Большой Канарский телескоп, в обсерватории на Канарских островах, диаметр объектива которого - целых 10 м.


Все телескопы устроены одинаково?

Нет. Основной тип телескопов - оптические, в них используют либо линзу, либо вогнутое зеркало или серию зеркал, либо зеркало и линзу вместе. Все эти телескопы работают с видимым светом - то есть смотрят на планеты, звёзды и галактики примерно так же, как на них смотрел бы очень зоркий человеческий глаз. Все объекты в мире имеют излучение, и видимый свет - это лишь маленькая доля спектра этих излучений. Смотреть на космос только через него - даже хуже, чем видеть мир вокруг в чёрно-белом свете; так мы теряем очень много информации. Поэтому существуют телескопы, работающие по иным принципам: например, радиотелескопы, ловящие радиоволны, или телескопы, ловящие гамма-лучи - их используют для того, чтобы наблюдать за самыми горячими объектами в космосе. Ещё есть ультрафиолетовые и инфракрасные телескопы, они хорошо подходят для обнаружения новых планет за пределами Солнечной системы: в видимом свете ярких звёзд невозможно разглядеть крошечные планеты, вращающиеся вокруг них, а вот в ультрафиолете и инфракрасном свете это сделать намного проще.


Зачем вообще нужны телескопы?

Хороший вопрос! Надо было задать его раньше. Мы отправляем аппараты в космос и даже на другие планеты, собираем на них информацию, но по большей части астрономия - уникальная наука, потому что она изучает объекты, к которой у неё нет прямого доступа. Телескоп - лучший инструмент, чтобы получать информацию о космосе. Он видит волны, не доступные человеческому глазу, мельчайшие детали, а также записывает свои наблюдения - потом с помощью этих записей можно замечать изменения на небе.

Благодаря современным телескопам мы имеем неплохое представление о звёздах, планетах и галактиках и даже можем обнаружить гипотетические частицы и волны, ранее не известные науке: например, тёмную материю (это загадочные частицы, из которых состоит 73% Вселенной) или гравитационные волны (их пытаются обнаружить с помощью обсерватории LIGO, состоящей из двух обсерваторий, которые находятся на расстоянии 3000 км друг от друга). Лучше всего для этих целей с телескопами поступать, как со всеми другими аппаратами, - отправлять их в космос.


Зачем отправлять телескопы в космос?

Поверхность Земли - не лучшее место для наблюдений за космосом. Наша планета создаёт очень много помех. Во-первых, воздух в атмосфере планеты работает как линза: он искажает свет от небесных объектов в случайном, непредсказуемом порядке - и искажает то, как мы их видим. Кроме этого, атмосфера поглощает многие виды излучения: например, инфракрасные и ультрафиолетовые волны. Для того чтобы обойти эти помехи, телескопы отправляют в космос. Правда, это очень дорого, поэтому так делают редко: за всю историю мы отправили около 100 телескопов разных размеров в космос - на самом деле это мало, даже больших оптических телескопов на Земле в несколько раз больше . Самый известный космический телескоп - «Хаббл», а телескоп Джеймса Уэбба, который должны запустить в 2018-м, станет чем-то вроде его последователя.


Насколько это дорого?

Мощный космический телескоп - это очень дорого. На прошлой неделе исполнилось 25 лет со дня запуска «Хаббла», самого известного космического телескопа. На него за всё время выделили около $10 млрд; часть этих денег - на ремонт, ведь «Хаббл» приходилось регулярно чинить (это перестали делать в 2009 году, но телескоп до сих пор работает). Вскоре после запуска телескопа произошла глупая история: первые изображения, сделанные им, были гораздо худшего качества, чем ожидалось. Оказалось, что из-за крошечной ошибки в расчётах зеркало «Хаббла» было недостаточно ровным, и пришлось отправить целую команду астронавтов, чтобы его починить. Это стоило около $8 млн. Цена телескопа Джеймса Уэбба может меняться и, скорее всего, будет расти ближе к запуску, но пока это около $8 млрд - и он стоит каждого цента.


Чего особенного
в телескопе имени Джеймса Уэбба?

Это будет самый впечатляющий телескоп в истории человечества. Проект задуман ещё в середине 90-х, и сейчас он наконец подходит к завершающей стадии. Телескоп улетит на 1,5 млн км от Земли и встанет на орбиту вокруг Солнца, а точнее на вторую точку Лагранжа от Солнца и Земли- это такое место, где гравитационные силы двух объектов балансируются, и поэтому третий объект (в данном случае - телескоп) может оставаться неподвижным. Телескоп Джеймса Уэбба - слишком большой, чтобы влезть в ракету, поэтому он долетит в сложенном виде, а в космосе раскроется, как цветок-трансформер; посмотрите вот на это видео , чтобы понять, как это произойдёт.

После этого он сможет заглянуть дальше, чем любой телескоп в истории: на 13 млрд световых лет от Земли. Поскольку свет, как можно догадаться, путешествует со скоростью света, объекты, которые мы видим, находятся в прошлом. Грубо говоря, когда вы смотрите на звезду через телескоп, то видите её, как она выглядела десятки, сотни, тысячи и так далее лет назад. Поэтому телескоп Джеймса Уэбба увидит первые звёзды и галактики такими, какими они были после Большого взрыва. Это очень важно: мы лучше поймём, как формировались галактики, появлялись звёзды и планетарные системы, сможем лучше понять происхождение жизни. Возможно, телескоп Джеймса Уэбба даже поможет нам внеземную жизнь. Есть одно но: во время миссии очень много чего может пойти не так, и, поскольку телескоп будет очень далеко от Земли, послать его починить, как это было с «Хабблом», будет невозможно.


Какой во всём этом практический смысл?

Это вопрос, который часто задаётся астрономии, особенно учитывая, сколько на неё тратится денег. На него можно дать два ответа: во-первых, не у всего, особенно у науки, должен быть понятный практический смысл. Астрономия и телескопы помогают нам лучше понять место человечества во Вселенной и вообще устройство мира. Во-вторых, практическая польза у астрономии всё-таки есть. Астрономия напрямую связана с физикой: понимая астрономию, мы гораздо лучше понимаем физику, ведь есть физические феномены, которые невозможно наблюдать на Земле. Скажем, если астрономы докажут существование тёмной материи, это очень сильно повлияет на физику. Кроме того, многие технологии, придуманные для космоса и астрономии, используют и в повседневной жизни: можно вспомнить спутники, которые сейчас используются для всего, от телевидения до GPS-навигации. Наконец, астрономия будет очень важна в будущем: для выживания человечеству понадобится добывать энергию из Солнца и ископаемые из астероидов, расселяться по другим планетам и, возможно, общаться с инопланетными цивилизациями - всё это будет невозможно, если мы не будем развивать астрономию и телескопы уже сейчас.