Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора — вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами — единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? «Наверное какой-то жуткий», подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y , чтобы вместо синуса подставить в нее формулу изменения x :

В итоге жуткий закон движения точки оказался обычной параболой , ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки — это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам . В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора — это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике . А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Скорость точки.

Перейдем к решению второй основной задачи кинематики точки - определению скорости и ускорения по уже заданному векторным, координатным или естественным способом движению.

1. Скоростью точки называется векторная величина, характеризующая быстроту и направление перемещения точки . В системе СИ скорость измеряется в м/с.

a) Определение скорости при векторном способе задания движения .

Пусть движение точки задано векторным способом, т.е. известно векторное уравнение (2.1): .

Рис. 2.6. К определению скорости точки

Пусть за время Dt радиус-вектор точки М изменится на величину . Тогда средней скоростью точки М за время Dt называется векторная величина

Вспоминая определение производной, заключаем:

Здесь и в дальнейшем знаком будем обозначать дифференцирование по времени. При стремлении Dt к нулю вектор , а, следовательно, и вектор , поворачиваются вокруг точки М и в пределе совпадают с касательной к траектории в этой точке. Таким образом, вектор скорости равен первой производной от радиус-вектора по времени и всегда направлен по касательной к траектории движения точки.

б) Скорость точки при координатном способе задания движения.

Выведем формулы для определения скорости при координатном способе задания движения. В соответствии с выражением (2.5), имеем:

Так как производные от постоянных по величине и направлению единичных векторов равны нулю, получаем

Вектор , как и любой вектор, может быть выражен через свои проекции:

Сравнивая выражения (2.6) и (2.7) видим, что производные координат по времени имеют вполне определенный геометрический смысл - они являются проекциями вектора скорости на координатные оси. Зная проекции, легко вычислить модуль и направление вектора скорости (рис. 2.7):

Рис. 2.7.К определению величины и направления скорости

в) Определение скорости при естественном способе задания движения.

Рис. 2.8. Cкорость точки при естественном способе задания движения

Согласно (2.4) ,

где - единичный вектор касательной. Таким образом,

Величина V =dS/dt называется алгебраической скоростью. Если dS/dt>0 , то функция S = S(t) возрастает и точка движется в сторону увеличения дуговой координаты S, т.е. точка движется в положительном направлении Если же dS/dt<0 , то точка движется в противоположном направлении.

2. Ускорение точки

Ускорением называется векторная величина, характеризующая быстроту изменения модуля и направления вектора скорости . В системе СИ ускорение измеряется в м/с 2 .


a) Определение ускорения при векторном способе задания движения .

Пусть точка М в момент времени t находится в положении М(t) и имеет скорость V(t), а в момент времени t + Dt находится в положении М(t + Dt) и имеет скорость V(t + Dt) (см. рис. 2.9).

Рис. 2.9. Ускорения точки при векторном способе задания движения

Средним ускорением за промежуток времени Dt называется отношение изменения скорости к Dt , т.е.

Предел при Dt ® 0 называется мгновенным (или просто ускорением) точки М в момент времени t

Согласно (2.11), ускорение при векторном способе задания движения равно векторной производной от скорости по времени.

б). Ускорения при координатном способе задания движения .

Подставляя (2.6) в (2.11) и дифференцируя произведения в скобках, находим:

Учитывая, что производные от единичных векторов равны нулю, получаем:

Вектор может быть выражен через свои проекции:

Сравнение (2.12) и (2.13) показывает, что вторые производные от координат по времени имеют вполне определенный геометрический смысл: они равны проекциям полного ускорения на координатные оси, т.e.

Зная проекции, легко вычислить модуль полного ускорения и направляющие косинусы, определяющие его направление:

в). Ускорение точки при естественном способе задания движения

Приведем некоторые сведения из дифференциальной геометрии, необходимые для определения ускорения при естественном способе задания движения.

Пусть точка М движется по некоторой пространственной кривой. С каждой точкой этой кривой связаны три взаимно ортогональные направления (касательная, нормаль и бинормаль), однозначно характеризующие пространственную ориентацию бесконечно малого элемента кривой вблизи данной точки. Ниже приводится описание процесса определения указанных направлений.

Для того чтобы провести касательную к кривой в точке М , проведем через нее и близлежащую точку М 1 секущую ММ 1 .

Рис. 2.10. Определение касательной к траектории движения точки

Касательная к кривой в точке М определяется как предельное положение секущей ММ 1 при стремлении точки М 1 к точке М (рис. 2.10). Единичный вектор касательной принято обозначать греческой буквой .

Проведем единичные векторы касательных к траектории в точках М и М 1 . Перенесем вектор в точку М (рис. 2.11) и образуем плоскость, проходящую через эту точку и векторы и . Повторяя процесс образования аналогичных плоскостей при стремлении точки М 1 к точке М , мы получаем в пределе плоскость, называемую соприкасающейся плоскостью.

Рис. 2.11. Определение соприкасающейся плоскости

Очевидно, что для плоской кривой соприкасающаяся плоскость совпадает с плоскостью, в которой лежит сама эта кривая. Плоскость, проходящая через точку М и перпендикулярная касательной в этой точке, называется нормальной плоскостью. Пересечение соприкасающейся и нормальной плоскостей образует прямую, называемую главной нормалью (рис. 2.12).

Рассмотрен пример решения задачи со сложным движением точки. Точка движется по прямой вдоль пластины. Пластина вращается вокруг неподвижной оси. Определяется абсолютная скорость и абсолютное ускорение точки.

Содержание

Условие задачи

Прямоугольная пластина вращается вокруг неподвижной оси по закону φ = 6 t 2 - 3 t 3 . Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO 1 лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой BD движется точка M . Задан закон ее относительного движения, т. е. зависимость s = AM = 40(t - 2 t 3) - 40 (s - в сантиметрах, t - в секундах). Расстояние b = 20 см . На рисунке точка M показана в положении, при котором s = AM > 0 (при s < 0 точка M находится по другую сторону от точки A ).

Найти абсолютную скорость и абсолютное ускорение точки M в момент времени t 1 = 1 с .

Указания . Эта задача - на сложное движение точки. Для ее решения необходимо воспользоваться теоремами о сложении скоростей и о сложении ускорений (теорема Кориолиса). Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка M на пластине в момент времени t 1 = 1 с , и изобразить точку именно в этом положении (а не в произвольном, показанном на рисунке к задаче).

Решение задачи

Дано: b = 20 см , φ = 6 t 2 - 3 t 3 , s = |AM| = 40(t - 2 t 3) - 40 , t 1 = 1 c .

Найти: v абс , a абс

Определение положения точки

Определяем положение точки в момент времени t = t 1 = 1 c .
s = 40(t 1 - 2 t 1 3) - 40 = 40(1 - 2·1 3) - 40 = -80 см.
Поскольку s < 0 , то точка M ближе к точке B, чем к D.
|AM| = |-80| = 80 см.
Делаем рисунок.

Согласно теореме о сложении скоростей , абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Определение относительной скорости точки

Определяем относительную скорость . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дифференцируя s по времени t , находим проекцию скорости на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с.
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительной скорости
v от = 200 см/с .

Определение переносной скорости точки

Определяем переносную скорость . Для этого считаем, что точка M жестко связана с пластиной, а пластина совершает заданное движение. То есть пластина вращается вокруг оси OO 1 . Дифференцируя φ по времени t , находим угловую скорость вращения пластины:
.
В момент времени t = t 1 = 1 с ,
.
Поскольку , то вектор угловой скорости направлен в сторону положительного угла поворота φ , то есть от точки O к точке O 1 . Модуль угловой скорости:
ω = 3 с -1 .
Изображаем вектор угловой скорости пластины на рисунке.

Из точки M опустим перпендикуляр HM на ось OO 1 .
При переносном движении точка M движется по окружности радиуса |HM| с центром в точке H .
|HM| = |HK| + |KM| = 3 b + |AM| sin 30° = 60 + 80·0,5 = 100 см ;
Переносная скорость:
v пер = ω|HM| = 3·100 = 300 см/с .

Вектор направлен по касательной к окружности в сторону вращения.

Определение абсолютной скорости точки

Определяем абсолютную скорость . Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Проводим оси неподвижной системы координат Oxyz . Ось z направим вдоль оси вращения пластины. Пусть в рассматриваемый момент времени ось x перпендикулярна пластине, ось y лежит в плоскости пластины. Тогда вектор относительной скорости лежит в плоскости yz . Вектор переносной скорости направлен противоположно оси x . Поскольку вектор перпендикулярен вектору , то по теореме Пифагора, модуль абсолютной скорости:
.

Определение абсолютного ускорения точки

Согласно теореме о сложении ускорений (теорема Кориолиса) , абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
- кориолисово ускорение.

Определение относительного ускорения

Определяем относительное ускорение . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дважды дифференцируя s по времени t , находим проекцию ускорения на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с 2 .
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительного ускорения
a от = 480 см/с 2 .
Изображаем вектор на рисунке.

Определение переносного ускорения

Определяем переносное ускорение . При переносном движении точка M жестко связана с пластиной, то есть движется по окружности радиуса |HM| с центром в точке H . Разложим переносное ускорение на касательное к окружности и нормальное ускорения:
.
Дважды дифференцируя φ по времени t , находим проекцию углового ускорения пластины на ось OO 1 :
.
В момент времени t = t 1 = 1 с ,
с -2 .
Поскольку , то вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то есть от точки O 1 к точке O. Модуль углового ускорения:
ε = 6 с -2 .
Изображаем вектор углового ускорения пластины на рисунке.

Переносное касательное ускорение :
a τ пер = ε |HM| = 6·100 = 600 см/с 2 .
Вектор направлен по касательной к окружности. Поскольку вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то направлен в сторону, противоположную положительному направлению поворота φ . То есть направлен в сторону оси x .

Переносное нормальное ускорение :
a n пер = ω 2 |HM| = 3 2 ·100 = 900 см/с 2 .
Вектор направлен к центру окружности. То есть в сторону, противоположную оси y .

Определение кориолисова ускорения

Кориолисово (поворотное) ускорение :
.
Вектор угловой скорости направлен вдоль оси z . Вектор относительной скорости направлен вдоль прямой |DB| . Угол между этими векторами равен 150° . По свойству векторного произведения,
.
Направление вектора определяется по правилу буравчика. Если ручку буравчика повернуть из положения в положение , то винт буравчика переместится в направлении, противоположном оси x .

Определение абсолютного ускорения

Абсолютное ускорение :
.
Спроектируем это векторное уравнение на оси xyz системы координат.

;

;

.
Модуль абсолютного ускорения:

.

Абсолютная скорость ;
абсолютное ускорение .

Формулы скорости (ускорения) точек твердого тела, выраженные через скорость (ускорение) полюса и угловую скорость (ускорение). Вывод этих формул из принципа, что расстояния между любыми точками тела, при его движении, остаются постоянными.

Содержание

Основные формулы

Скорость и ускорение точки твердого тела с радиус вектором определяются по формулам:
;
.
где - угловая скорость вращения, - угловое ускорение. Они равны для всех точек тела и могут изменяться со временем t .
и - скорость и ускорение произвольным образом выбранной точки A с радиус вектором . Такую точку часто называют полюсом.
Здесь и далее, произведения векторов в квадратных скобках означают векторные произведения.

Вывод формулы для скорости

Выберем прямоугольную неподвижную систему координат Oxyz . Возьмем две произвольные точки твердого тела A и B . Пусть (x A , y A , z A ) и (x B , y B , z B ) - координаты этих точек. При движении твердого тела они являются функциями от времени t . Их производные по времени t являются проекциями скоростей точек:
, .

Воспользуемся тем, что при движении твердого тела, расстояние | AB| между точками остается постоянным, то есть не изменяется со временем t . Также постоянным является квадрат расстояния
.
Продифференцируем это уравнение по времени t , применяя правило дифференцирования сложной функции.

Сократим на 2 .
(1)

Введем векторы
,
.
Тогда уравнение (1) можно представить в виде скалярного произведения векторов:
(2) .
Отсюда следует, что вектор перпендикулярен вектору . Воспользуемся свойством векторного произведения. Тогда можно представить в виде:
(3) .
где - некоторый вектор, который мы вводим только для того, чтобы автоматически выполнялось условие (2) .
Запишем (3) в виде:
(4) ,

Теперь займемся изучением свойств вектора . Для этого составим уравнение, которое не содержит скоростей точек. Возьмем три произвольные точки твердого тела A, B и C . Запишем для каждой пары этих точек уравнение (4) :
;
;
.
Сложим эти уравнения:

.
Сокращаем сумму скоростей в левой и правой части. В результате получаем векторное уравнение, содержащее только исследуемые векторы :
(5) .

Легко заметить, что уравнение (5) имеет решение:
,
где - какой-то вектор, имеющий равное значение для любых пар точек твердого тела. Тогда уравнение (4) для скоростей точек тела примет вид:
(6) .

Теперь рассмотрим уравнение (5) с математической точки зрения . Если записать это векторное уравнение по компонентам на оси координат x, y, z , то векторное уравнение (5) является линейной системой, состоящей из 3-ех уравнений с 9-ю переменными:
ω BAx , ω BAy , ω BAz , ω CBx , ω CBy , ω CBz , ω ACx , ω ACy , ω ACz .
Если уравнения системы (5) линейно не зависимы, то их общее решение содержит 9 - 3 = 6 произвольных постоянных. Поэтому мы нашли не все решения. Существуют еще какие-то. Чтобы их найти замечаем, что найденное нами решение полностью определяет вектор скорости . Поэтому дополнительные решения не должны приводить к изменению скорости. Заметим, что векторное произведение двух равных векторов равно нулю. Тогда, если в (6) к вектору прибавить член, пропорциональный , то скорость не изменится:


.

Тогда общее решение системы (5) имеет вид:
;
;
,
где C BA , C CB , C AC - постоянные.

Выпишем общее решение системы (5) в явном виде.
ω BAx = ω x + C BA (x B - x A )
ω BAy = ω y + C BA (y B - y A )
ω BAz = ω z + C BA (z B - z A )
ω CBx = ω x + C CB (x C - x B )
ω CBy = ω y + C CB (y C - y B )
ω CBz = ω z + C CB (z C - z B )
ω ACx = ω x + C AC (x A - x C )
ω ACy = ω y + C AC (y A - y C )
ω ACz = ω z + C AC (z A - z C )
Это решение содержит 6 произвольных постоянных:
ω x , ω y , ω z , C BA , C CB , C AC .
Как и должно быть. Таким образом, мы нашли все члены общего решения системы (5) .

Физический смысл вектора ω

Как уже указывалось, члены вида не влияют на значения скоростей точек. Поэтому их можно опустить. Тогда скорости точек твердого тела связаны соотношением:
(6) .

Это вектор угловой скорости твердого тела

Выясним физический смысл вектора .
Для этого положим v A = 0 . Это всегда можно сделать если выбрать систему отсчета, которая в рассматриваемый момент времени движется относительно неподвижной системы со скоростью . Начало системы отсчета O поместим в точку A . Тогда r A = 0 . И формула (6) примет вид:
.
Ось z системы координат направим вдоль вектора .
По свойству векторного произведения, вектор скорости перпендикулярен векторам и . То есть он параллелен плоскости xy . Модуль вектора скорости:
v B = ω r B sin θ = ω |HB| ,
где θ - это угол между векторами и ,
|HB| - это длина перпендикуляра, опущенного из точки B на ось z .

Если вектор не меняется со временем, то точка B движется по окружности радиуса |HB| со скоростью
v B = |HB| ω .
То есть ω - это угловая скорость вращения точки B вокруг точки H .
Таким образом, мы приходим к выводу, что - это вектор мгновенной угловой скорости вращения твердого тела .

Скорость точек твердого тела

Итак, мы нашли, что скорость произвольной точки B твердого тела определяется по формуле:
(6) .
Она равна сумме двух членов. Точку A часто называют полюсом . В качестве полюса обычно выбирают неподвижную точку или точку, совершающую движение с известной скоростью. Второй член представляет собой скорость вращения точек тела относительно полюса A .

Поскольку точка B - это произвольная точка, то в формуле (6) можно сделать подстановку . Тогда и скорость точки твердого тела с радиус вектором определяются по формуле:
.
Скорость произвольной точки твердого тела равна сумме скорости поступательного движения полюса A и скорости вращательного движения относительно полюса A .

Ускорение точек твердого тела

Теперь выведем формулу для ускорения точек твердого тела. Ускорение - это производная скорости по времени. Дифференцируем формулу для скорости
,
применяя правила дифференцирования суммы и произведения:
.
Вводим ускорение точки A
;
и угловое ускорение тела
.
Далее замечаем, что
.
Тогда
.
Или
.

То есть вектор ускорения точек твердого тела можно представить в виде суммы трех векторов:
,
где
- ускорение произвольно выбранной точки, которую часто называют полюсом ;
- вращательное ускорение ;
- осестремительное ускорение .

Если угловая скорость изменяется только по величине и не изменяется по направлению, то векторы угловой скорости и ускорения направлены вдоль одной прямой. Тогда направление вращательного ускорения совпадает или противоположно направлению скорости точки. Если угловая скорость изменяется по направлению, то вращательное ускорение и скорость могут иметь разные направления.

Осестремительное ускорение всегда направлено в сторону мгновенной оси вращения так, что пересекает ее под прямым углом.

Скоростью точки называется вектор, определяющий в каждый данный момент времени быстроту и направление движения точки.

Скорость равномерного движения определяется отношением пути, пройденного точкой за некоторый промежуток времени, к величине этого промежутка времени.

Скорость; S- путь; t- время.

Измеряется скорость в единицах длины, деленных на единицу времени: м/с; см/с; км/ч и т.д.

В случае прямолинейного движения вектор скорости направлен вдоль траектории в сторону ее движения.

Если точка за равные промежутки времени проходит неравные пути, то данное движение называется неравномерным. Скорость является величиной переменной и является функцией времени.

Средней за данный промежуток времени скоростью точки называется скорость такого равномерного прямолинейного движения, при котором точка за этот промежуток времени получила бы то же самое перемещение, как и в рассматриваемом ее движении.

Рассмотрим точку М, которая перемещается по криволинейной траектории, заданной законом

За промежуток времени?t точка М переместится в положение М 1 по дуге ММ 1 .Если промежуток времени?t мал, то дугу ММ 1 можно заменить хордой и в первом приближении найти среднюю скорость движения точки

Эта скорость направлена по хорде от точки М к точке М 1 . Истинную скорость найдем путем перехода к пределу при?t> 0

Когда?t> 0, направление хорды в пределе совпадает c направлением касательной к траектории в точке М.

Таким образом, величина скорости точки определяется как предел отношения приращения пути к соответствующему промежутку времени при стремлении последнего к нулю. Направление скорости совпадает с касательной к траектории в данной точке.

Ускорение точки

Отметим, что в общем случае, при движении по криволинейной траектории скорость точки изменяется и по направлению и по величине. Изменение скорости в единицу времени определяется ускорением. Другими словами, ускорением точки называется величина, характеризующая быстроту изменения скорости во времени. Если за интервал времени?t скорость изменяется на величину,то среднее ускорение

Истинным ускорением точки в данный момент времени t называется величина, к которой стремится среднее ускорение при?t> 0, то есть

При отрезке времени стремящимся к нулю вектор ускорения будет меняться и по величине и по направлению, стремясь к своему пределу.

Размерность ускорения

Ускорение может выражаться в м/с 2 ; см/с 2 и т.д.

В общем случае, когда движение точки задано естественным способом, вектор ускорения обычно раскладывают на две составляющие, направленные по касательной и по нормали к траектории точки.

Тогда ускорение точки в момент t можно представить так

Обозначим составляющие пределы через и.

Направление вектора не зависит от величины промежутка?t времени.

Это ускорение всегда совпадает с направлением скорости, то есть, направлено по касательной к траектории движения точки и поэтому называется касательным или тангенциальным ускорением.

Вторая составляющая ускорения точки направлена перпендикулярно к касательной к траектории в данной точке в сторону вогнутости кривой и влияет на изменение направления вектора скорости. Эта составляющая ускорения носит название нормального ускорения.

Поскольку численное значение вектора равно приращению скорости точки за рассматриваемый промежуток?t времени, то численное значение касательного ускорения

Численное значение касательного ускорения точки равно производной по времени от численной величины скорости. Численное значение нормального ускорения точки равно квадрату скорости точки, деленному на радиус кривизны траектории в соответствующей точке кривой

Полное ускорение при неравномерном криволинейном движении точки складывается геометрически из касательного и нормального ускорений.