Очевидный тренд современной бытовой аудиотехники - это различные портативные колонки и наушники, именно в этих товарных категориях сегодня представлено больше всего позиций. Соревноваться с ними в популярности очень тяжело, но есть одно устройство, необходимость наличия которого постоянно возрастает - это ЦАП, цифро-аналоговый преобразователь. Зачем он нужен?

Воспользуемся методом «от противного». Если вы ортодоксальный консерватор и не слушаете ничего, кроме FM-радио, грампластинок и прочих магнитоальбомов, то ЦАП вам НЕ нужен. Для всех остальных, от геймеров до киноманов - это определенно must have, если конечно вы не привыкли довольствоваться любимым увлечением по остаточному принципу.

Кстати говоря, зачем вообще музыка записывается, хранится и передается в цифровом виде? Ведь по природе своей она имеет аналоговый характер. Прежде всего — это удобно, поскольку с пластинкой или катушкой подмышкой особо не походишь. Затем - цифровой формат подразумевает передачу и копирование без потерь. Так что основная задача ЦАП - это максимально качественно произвести конвертацию.

Простейший пример - типичный смартфон. У большинства из нас в нем, помимо прочего, хранится масса песен либо имеются возможности потокового воспроизведения из Сети. Казалось бы - достаточно воткнуть наушники и насладиться музыкой. Но штатный ЦАП смартфона мало того, что чаще всего разрабатывается далеко не аудиофилами, так еще и в качестве основного пункта техзадания имеет низкое энергопотребление, которое с качеством звучания не коррелирует от слова совсем. Выход - использование внешнего конвертера, портативного и «долгоиграющего» (за счет собственного аккумулятора), который в состоянии будет «раскачать» даже самые тугие наушники.

А что же дома, где проблема экономии электроэнергии прямо скажем вторична? Допустим вы любите какой-нибудь телеканал или передачу, поиграть на приставке или посмотреть фильм. Аудиосистема абсолютного большинства современных плоскоэкранных телевизоров разрабатывается по остаточному принципу, вплоть до категории «контроля работоспособности», примерно как со штатными кабелями или наушниками - убедился, что аппарат функционирует и отложил их в сторону. Такая же ситуация с аналоговыми выходами — они есть, но прямо скажем — «для галочки». Цифровые же выходы если и отличаются качеством, то в гораздо меньших пределах. Таким образом - существует возможность полноценного подключения телевизора к уже имеющейся стереосистеме и это опять же задача ЦАП.

Для людей, чья работа проходит непосредственно за компьютером, ЦАП тоже серьезное подспорье и даже радость. Подключив через него колонки или наушники, можно обеспечить себя качественной музыкой в параллель к рабочему процессу. Подобных примеров использования - масса, так что вопрос «надо/не надо» тут не стоит, задача исключительно выбора подходящего устройства.

Так что, тут как ни крути, а без хорошего ЦАП на сегодня просто не обойтись.

Многие любители качественной музыки ищут смартфоны с ЦАП. Разбираемся, что это такое и зачем нужно.

Цифро-аналоговый преобразователь (ЦАП) применяется в смартфонах, ноутбуках, планшетах, аудиоплеерах и других устройствах, чтобы цифровой формат аудиофайлов мог воспроизводиться посредством аналогового сигнала через наушники и встроенный динамик смартфона. Простыми словами, ЦАП позволяет улучшить качество звука.

От уровня выделенного ЦАП зависит качество звука, который способен воспроизвести мобильный телефон. Эффективная работа преобразователя позволяет выдать звук, максимально приближенный к реальному - тому, на который звукорежиссер ориентировался при создании мелодии.

Форматы аудиофайлов

Чтобы в полной мере реализовать потенциал ЦАП, музыки и аудиодорожек в формате MP3 будет недостаточно. Прирост в качестве звучания с задействованным ЦАП станет ощутим при воспроизведении Lossless-файлов в форматах FLAC, WAW или APE.

Есть мнение, что звук с минимальным битрейтом преобразователь не улучшает, а более явно проявляет его недостатки, поэтому для получения качественного звука рекомендуют воспроизводить более продвинутые форматы аудио.

Виды ЦАП в смартфонах

ЦАП в гаджетах может быть представлен в виде отдельного чипа или интегрирован в составную часть аппаратного кодека (как встроенная видеокарта в компьютере). Поддержка в смартфоне выделенного ЦАП для воспроизведения звука в наушниках говорит о серьезности в подходе производителя и музыкальной направленности устройства.

Премиальные и флагманские смартфоны с аппаратными кодеками в тандеме с оптимально подобранными наушниками среднего и высокого ценового сегмента иногда способны выдать качественный звук, но истинным аудиофилам этого может быть недостаточно.

OTG-ЦАП

OTG-ЦАП - специальные устройства, которые можно подключать к смартфонам через OTG, своего рода, портативные ЦАП. Несмотря на габариты и непрактичность в транспортировке, такая связка все еще актуальна среди любителей качественного звука.

С выходом LG G2 необходимость в подобных устройствах снизилась - с этого устройства началась эра интеграции полноценных преобразователей. Многие современные смартфоны оснащаются ЦАП:

  • Флагманы линейки Samsung Galaxy - Wolfson.
  • Meizu - ESS Sabre.
  • LG - ESS Sabre.
  • HTC - WCD9335.
  • ZTE - Asahi Kasei.
  • Nubia - АКМ.
  • iPhone - Cirrus Logic.

Аппаратная составляющая современных смартфонов, развитие программного обеспечения и наличие высококлассных наушников позволяют наслаждаться качественным звуком в большинстве гаджетов среднего ценового сегмента, но все равно смотрятся предпочтительнее.

Цифро-аналоговый преобразователь (ЦАП) - это устройство для преобразования цифрового кода в аналоговый сигнал по величине, пропорциональной значению кода.

ЦАП применяются для связи цифровых управляющих систем с устройствами, которые управляются уровнем аналогового сигнала. Также, ЦАП является составной частью во многих структурах аналого-цифровых устройств и преобразователей.

ЦАП характеризуется функцией преобразования. Она связывает изменение цифрового кода с изменением напряжения или тока. Функция преобразования ЦАП выражается следующим образом

U вых - значение выходного напряжения, соответствующее цифровому коду N вх , подаваемому на входы ЦАП.

U мах - максимальное выходное напряжение, соответствующее подаче на входы максимального кода N мах

Величину К цап , определяемую отношением , называют коэффициентом цифроаналогового преобразования. Несмотря на ступенчатый вид характеристики, связанный с дискретным изменением входной величины (цифрового кода), считается, что ЦАП являются линейными преобразователями.

Если величину N вх представить через значения весов его разрядов, функцию преобразования можно выразить следующим образом

, где

i - номер разряда входного кода N вх ; A i - значение i -го разряда (ноль или единица); U i – вес i -го разряда; n – количество разрядов входного кода (число разрядов ЦАП).

Вес разряда определяется для конкретной разрядности, и вычисляется по следующей формуле

U ОП -опорное напряжение ЦАП

Принцип работы большинства ЦАП - этосуммирование долей аналоговых сигналов (веса разряда), в зависимости от входного кода.

ЦАП можно реализовать с помощью суммирования токов, суммирования напряжений и деления напряжений. В первом и втором случае в соответствии со значениями разрядов входного кода, суммируются сигналы генераторов токов и источников Э.Д.С. Последний способ представляет собой управляемый кодом делитель напряжения. Два последних способа не нашли широкого распространения в связи с практическими трудностями их реализации.

Способы реализации ЦАП с взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов.

Этот ЦАП состоит из набора резисторов и набора ключей. Число ключей и число резисторов равно количеству разрядов n входного кода. Номиналы резисторов выбираются в соответствии с двоичным законом. Если R=3 Ом, то 2R= 6 Ом, 4R=12 Ом, и так и далее, т.е. каждый последующий резистор больше предыдущего в 2 раза. При присоединении источника напряжения и замыкании ключей, через каждый резистор потечет ток. Значения токов по резисторам, благодаря соответствующему выбору их номиналов, тоже будут распределены по двоичному закону. При подаче входного кода N вх включение ключей производится в соответствии со значением соответствующих им разрядов входного кода. Ключ замыкается, если соответствующий ему разряд равен единице. При этом в узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода N вх .

Сопротивление резисторов матрицы выбирают достаточно большое (десятки кОм). Поэтому для большинства практических случаев для нагрузки ЦАП играет роль источника тока. Если на выходе преобразователя необходимо получить напряжение, то на выходе такого ЦАП устанавливается преобразователь "ток-напряжение", например, на операционном усилителе

Однако при смене кода на входах ЦАП меняется величина тока, отбираемая от источника опорного напряжения. Это является главным недостатком такого способа построения ЦАП. Такой метод построения можно использовать только в том случае, если источник опорного напряжения будет с низким внутренним сопротивлением. В другом случае в момент смены входного кода изменяется ток, отбираемый у источника, что приводит к изменению падения напряжения на его внутреннем сопротивлении и, в свою очередь, к дополнительному напрямую не связанному со сменой кода изменению выходного тока. Исключить этот недостаток позволяет структура ЦАП с переключающимися ключами

В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Общим недостатком обеих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную точность подгонки как самого большого, так и самого маленького по номиналу резистора. В интегральном исполнении ЦАП при числе разрядов более 10 это обеспечить достаточно трудно.

От всех указанных выше недостатков свободны структуры на основе резистивных R-2R матриц

При таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза. Наличие только двух номиналов резисторов в матрице позволяет достаточно просто осуществлять подгонку их значений.

Выходной ток для каждой из представленных структур пропорционален одновременно не только величине входного кода, но и величине опорного напряжения. Часто говорят, что он пропорционален произведению этих двух величин. Поэтому такие ЦАП называют умножающими. Такими свойствами будут обладать все ЦАП, в которых формирование взвешенных значений токов, соответствующих весам разрядов, производится с помощью резистивных матриц.

Кроме использования по прямому назначению умножающие ЦАП используются как аналого-цифровые перемножители, в качестве кодоуправляемых сопротивлений и проводимостей. Они широко применяются как составные элементы при построении кодоуправляемых (перестраиваемых) усилителей, фильтров, источников опорных напряжений, формирователей сигналов и т.д.

Основные параметры и погрешности ЦАП

Основные параметры, которые можно увидеть в справочнике:

1. Число разрядов – количество разрядов входного кода.

2. Коэффициент преобразования – отношение приращения выходного сигнала к приращению входного сигнала для линейной функции преобразования.

3. Время установления выходного напряжения или тока – интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное напряжение или ток окончательно войдут в зону шириной младшего значащего разряда (МЗР ).

4. Максимальная частота преобразования – наибольшая частота смены кода, при которой заданные параметры соответствуют установленным нормам.

Существуют и другие параметры, характеризующие исполнение ЦАП и особенности его функционирования. В их числе: входное напряжение низкого и высокого уровня, ток потребления, диапазон выходного напряжения или тока.

Важнейшими параметрами для ЦАП являются те, которые определяют его точностные характеристики.

Точностные характеристики каждого ЦАП, прежде всего, определяются нормированными по величине погрешностями.

Погрешности делятся на динамические и статические. Статическими погрешностями называются погрешности, остающиеся после завершения всех переходных процессов, связанных со сменой входного кода. Динамические погрешности определяются переходными процессами на выходе ЦАП, возникшими вследствие смены входного кода.

Основные типы статических погрешностей ЦАП:

Абсолютная погрешность преобразования в конечной точке шкалы – отклонение значения выходного напряжения (тока) от номинального значения, соответствующего конечной точке шкалы функции преобразования. Измеряется в единицах младшего разряда преобразования.

Напряжение смещения нуля на выходе – напряжение постоянного тока на выходе ЦАП при входном коде, соответствующем нулевому значению выходного напряжения. Измеряется в единицах младшего разряда. Погрешность коэффициента преобразования (масштабная) –связанная с отклонением наклона функции преобразования от требуемого.

Нелинейность ЦАП – отклонение действительной функции преобразования от оговоренной прямой линии. Является самой плохой погрешностью с которой трудно бороться.

Погрешности нелинейности в общем случае разделяют на два типа – интегральные и дифференциальные.

Погрешность интегральной нелинейности – максимальное отклонение реальной характеристики от идеальной. Фактически при этом рассматривается усредненная функция преобразования. Определяют эту погрешность в процентах от конечного диапазона выходной величины.

Дифференциальная нелинейность связана с неточностью задания весов разрядов, т.е. с погрешностями элементов делителя, разбросом остаточных параметров ключевых элементов, генераторов токов и т.д.

Способы идентификации и коррекции погрешностей ЦАП

Желательно, чтобы коррекция погрешностей производилось при изготовлении преобразователей (технологическая подгонка). Однако, часто она желательна и при использовании конкретного образца БИС в том или ином устройстве. В этом случае коррекция проводится введением в структуру устройства кроме БИС ЦАП дополнительных элементов. Такие методы получили название структурных.

Самым сложным процессом является обеспечение линейности, так как они определяются связанными параметрами многих элементов и узлов. Чаще всего осуществляют подгонку только смещения нуля, коэффициента

Точностные параметры, обеспечиваемые технологическими приемами, ухудшаются при воздействии на преобразователь различных дестабилизирующих факторов, в первую очередь – температуры. Необходимо помнить и о факторе старения элементов.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.

Методы коррекции с тестовым контролем заключаются в идентификации погрешностей ЦАП на всем множестве допустимых входных воздействий и добавлением, рассчитанных на основе этого поправок, к входной или выходной величине для компенсации этих погрешностей.

При любом методе коррекции с контролем по тестовому сигналу предусматриваются следующие действия:

1. Измерение характеристики ЦАП на достаточном для идентификации погрешностей множестве тестовых воздействий.

2. Идентификация погрешностей вычислением их отклонений по результатам измерений.

3. Вычисление корректирующих поправок для преобразуемых величин или требуемых корректирующих воздействий на корректируемые блоки.

4. Проведение коррекции.

Контроль может проводиться один раз перед установкой преобразователя в устройство с помощью специального лабораторного измерительного оборудования. Может проводиться и с помощью специализированного оборудования встроенного в устройство. При этом контроль, как правило, проводится периодически, все то время пока преобразователь не участвует непосредственно в работе устройства. Такая организация контроля и коррекции преобразователей может осуществляться при его работе в составе микропроцессорной измерительной системы.

Основной недостаток любого метода сквозного контроля – большое время контроля наряду с разнородностью и большим объемом используемой аппаратуры.

Определенные тем или иным способом величины поправок хранятся, как правило, в цифровой форме. Коррекция же погрешностей с учетом этих поправок может проводиться как в аналоговой, так и цифровой форме.

При цифровой коррекции поправки добавляются с учетом их знака к входному коду ЦАП. В результате на вход ЦАП поступает код, при котором на его выходе формируется требуемое значение напряжения или тока. Наиболее простая реализация такого способа коррекции состоит из корректируемого ЦАП, на входе которого установлено цифровое запоминающее устройство (ЗУ) . Входной код играет роль адресного. В ЗУ по соответствующим адресам занесены, заранее рассчитанные с учетом поправок, значения кодов, подаваемые на корректируемый ЦАП.

При аналоговой коррекции кроме основного ЦАП используется еще один дополнительный ЦАП. Диапазон его выходного сигнала соответствует максимальной величине погрешности корректируемого ЦАП. Входной код одновременно поступает на входы корректируемого ЦАП и на адресные входы ЗУ поправок. Из ЗУ поправок выбирается соответствующая данному значению входного кода поправка. Код поправки преобразуется в пропорциональный ему сигнал, который суммируется с выходным сигналом корректируемого ЦАП. Ввиду малости требуемого диапазона выходного сигнала дополнительного ЦАП по сравнению с диапазоном выходного сигнала корректируемого ЦАП собственными погрешностями первого пренебрегают.

В ряде случаев возникает необходимость проведения коррекции динамики работы ЦАП.

Переходная характеристика ЦАП при смене различных кодовых комбинаций будет различной, иными словами – различным будет время установления выходного сигнала. Поэтому при использовании ЦАП необходимо учитывать максимальное время установления. Однако в ряде случаев удается корректировать поведение передаточной характеристики.

Особенности применения БИС ЦАП

Для успешного применения современных БИС ЦАП недостаточно знать перечень их основных характеристик и основные схемы их включения.

Существенное влияние на результаты применения БИС ЦАП оказывает выполнение эксплуатационных требований, обусловленных особенностями конкретной микросхемы. К таким требованиям относятся не только использование допустимых входных сигналов, напряжения источников питания, емкости и сопротивления нагрузки, но и выполнение очередности включения разных источников питания, разделение цепей подключения разных источников питания и общей шины, применение фильтров и т.д.

Для прецизионных ЦАП особое значение приобретает выходное напряжение шума. Особенность проблемы шума в ЦАП заключается в наличии на его выходе всплесков напряжения, вызванных переключением ключей внутри преобразователя. По амплитуде эти всплески могут достигать нескольких десятков значений весов МЗР и создавать трудности в работе следующих за ЦАП устройств обработки аналоговых сигналов. Решением проблемы подавления таких всплесков является использование на выходе ЦАП устройств выборки-хранения (УВХ ). УВХ управляется от цифровой части системы, формирующей новые кодовые комбинации на входе ЦАП. Перед подачей новой кодовой комбинации УВХ переводится в режим хранения, размыкая цепь передачи аналогового сигнала на выход. Благодаря этому всплеск выходного напряжения ЦАП не попадает на вывод УВХ , которое затем переводится в режим слежения, повторяя выходной сигнал ЦАП.

Специальное внимание при построении ЦАП на базе БИС необходимо уделять выбору операционного усилителя, служащего для преобразования выходного тока ЦАП в напряжение. При подаче входного кода ЦАП на выходе ОУ будет действовать ошибка D U , обусловленная его напряжением смещения и равная

,

где U см – напряжение смещения ОУ ; R ос – величина сопротивления в цепи обратной связи ОУ ; R м – сопротивление резистивной матрицы ЦАП (выходное сопротивление ЦАП), зависящее от величины поданного на его вход кода.

Поскольку отношение изменяется от 1 до 0, ошибка, обусловленная U см , изменяется в приделах (1...2)U см . Влиянием U см пренебрегают при использовании ОУ, у которого .

Вследствие большой площади транзисторных ключей в КМОП БИС существенная выходная емкость БИС ЦАП (40...120 пФ в зависимости от величины входного кода). Эта емкость оказывает существенное влияние на время установления выходного напряжения ОУ до требуемой точности. Для уменьшения этого влияния R ос шунтируют конденсатором С ос .

В ряде случаев на выходе ЦАП необходимо получать двуполярное выходное напряжение. Этого можно добиться введением на выходе смещения диапазона выходного напряжения, а для умножающих ЦАП переключением полярности источника опорного напряжения.

Следует обратить внимание, что если вы используете интегральный ЦАП, имеющий число разрядов большее чем вам нужно, то входы неиспользуемых разрядов подключают к земляной шине, однозначно определяя на них уровень логического нуля. Причем для того, чтобы работать по возможности с большим диапазоном выходного сигнала БИС ЦАП за таковые разряды принимают разряды, начиная с самого младшего.

Один из практических примеров применения ЦАП- это формирователи сигналов разной формы. Сделал небольшую модель в протеусе. С помощью ЦАП управляемого МК (Atmega8, хотя можно сделать и на Tiny), формируются сигналы различной формы. Программа написана на Си в CVAVR. По нажатию кнопки формируемый сигнал меняется.

БИС ЦАП DAC0808 National Semiconductor,8 –разрядный, высокоскоростной, включена согласно типовой схеме. Так как выход у него токовый, с помощью инвертирующего усилителя на ОУ преобразуется в напряжение.

В принципе можно даже вот такие интересные фигуры, что-то напоминает правда? Если выбрать разрядность по больше, то получится более плавные

Список литературы:
1. Бахтияров Г.Д., Малинин В.В., Школин В.П. Аналого-цифровые преобразователи/Под ред. Г.Д.Бахтиярова - М.: Сов. радио. – 1980. – 278 с.: ил.
2. Проектирование аналого-цифровых контрольно-управляющих микропроцессорных систем.
3. О.В. Шишов. - Саранск: Изд-во Мордов. ун-та 1995. - с.

Ниже вы можете скачать проект в

Давайте разберемся в этой теме и уясним для себя раз и навсегда — нужен ли вам отдельный ЦАП, или нет.

Думаю, вы ни раз читали на форумах или слышали от знакомых о том, что для того, чтобы слушать качественный звук вам просто необходимо купить отдельный ЦАП. Правда это или нет — будем разбираться. Нужен ли вам ЦАП на самом деле, сколько он стоит и как он работает — обо всём этом я поведую вам в этой статье. Маленький спойлер — может оказаться так, что отдельный ЦАП вам совершенно не нужен .

Итак, что такое ЦАП?

ЦАП преобразует цифровой сигнал в аналоговый, чтобы ваши наушники могли создавать звук. Вот так просто! Большинство чипов ЦАП находятся в источниках того, к чему вы подключаете наушники, и обычно стоит для производителя от 3 до 30 долларов США. Это очень простой и постоянный компонент любого смартфона, хотя разъем для наушников и пытаются убить, в основном компания Apple.

Подобно усилителям для наушников, отдельные ЦАП стали появляться в продаже для того, чтобы хоть как-то компенсировать низкий уровень качества воспроизведения звука. Вы удивитесь, но в 80-е и даже в 90-е годы далеко не всё потребительское оборудование могло справится даже с простыми наушниками, не говоря уже о более серьезном оборудовании. Довольно часто, даже если ЦАП был встроен в готовый прибор, он был неправильно к нему подключен или плохо экранирован, поэтому во время прослушивания вы могли слышать помехи или наводки от работы самого оборудования. Добавим сюда далеко не лучшее качество музыкального материала с низкой частотой дискретизацией первых mp3 файлов и вы можете вообразить на что была похожа музыка 90-х. Согласитесь, никто не захочет слушать такое для собственного удовольствия.

ЦАП преобразует цифровой сигнал в аналоговый, чтобы ваши наушники могли создавать звук. Вот так просто!

Но с тех пор цифровая музыка прошла долгий путь. Значительно возросшая культура производства музыкального оборудования привела к тому, что даже дешевые чипы стали давать довольно хорошее качество звучания, да и музыкальный материал стал гораздо более качественным. Сегодня музыка в почти везде записана с битрейтом в 320 кб/сек, а многие перешли на прослушивание материала в или в новомодном . И там, где раньше требовалось серьезное оборудование для достижение хорошего качества звука, сейчас в большинстве случаев достаточно возможностей обычного хорошего смартфона.

Как работает ЦАП?


Любое аудио, независимо от того как оно хранится, в виде виниловой пластинки или mp3 файла, это звуковая волна . Когда компьютер записывает аналоговый сигнал, он представляет его в цифровой форме, напоминающий аналоговую волну. Но если аналоговая звуковая волна плавная и непрерывная, то её цифровая версия дискретна. Это значит, что волна записывается не постоянно, а один раз за определённый промежуток времени. По оси Y записывается амплитуда волны (т.е. насколько она громкая), а по оси X записывается её изменение во времени. Каждая волна имеет определённый период, изменяющийся со временем, и он называется частотой, измеряемой в Герцах. Думаю, вы уже где-то слышали, что частота волны определяет тон звука который вы слышите. Чем выше частота (т.е. чем чаще за единицу времени волна принимает максимальное и минимальное своё значение), тем выше тон звука.

Задача ЦАПа состоит в том, чтобы получить оцифрованную информацию о звуке и по ней воссоздать первоначальный звук в аналоговой форме, который потом подаётся в наушники и вы слышите звук. Для этого ЦАП получает данные о каждом положении звуковой волны очень много раз в секунду, это значение называется частотой дискретизации, чем она выше, тем ближе цифровая копия к оригиналу и тем выше качество звука. По причинам того, что ЦАПы несовершенны, при этой процедуре преобразования цифрового сигнала в аналоговый могут возникать различные проблемы, это: джиттеринг , узкий динамический диапазон и ограниченный битрейт (малая частота дискретизации).

Задача ЦАПа состоит в том, чтобы получить оцифрованную информацию о звуке и по ней воссоздать первоначальный звук в аналоговой форме, который потом подаётся в наушники и вы слышите звук.

Прежде чем продолжить, вы должны запомнить следующие термины: битрейт , битность записи звука и частота дискретизации .

Битрейт — показывает какое количество информации о звуке записывается для одной секунды звучания.

— показывает сколько раз в секунду было замерено изменение амплитуды звукового сигнала.

Битность звука — показывает какое количество данных было записано за одно измерение частоты дискретизации.

Что такое Джиттеринг?

Но всё же, что такое Джиттер? Этот эффект полностью зависит от частоты дискретизации, или от того как часто мы измеряем изменение амплитуды аналоговой звуковой волны. Представьте, что мы делаем это реже, чем 44.1 Гц или раз в секунду. Если мы попытаемся таким образом оцифровать звук очень высокой частоты, например тарелок ударной установки или колокольчиков, мы не будем успевать замерить прохождение сигналом полной амплитуды звука и при неудачном стечении обстоятельств будем замерять только нижние значение амплитуды или средние. В итоге, вместо высокого и чистого звука мы получим невнятное дрожжание звука, которое совсем не похоже на то, что мы записывали. Просто посмотрите на иллюстрацию и вам всё станет ясно.

Минимально необходимая частота дискретизации для полного отсутствия джиттеринга это 44.1 Гц.

Под пунктом А вы видите нормальную частоту дискретизации, которая успевает измерить движение звуковой волны в каждом его положении и в оцифрованном виде мы получим тот же звук, что и слышали от живого инструмента. На рисунке B мы видим, что амплитуда звука успевает полностью измениться, но частота дискретизации недостаточная для того, чтобы успеть замерить это, и потому мы услышим дрожание звука более низкой частоты, чем был звук изначально.

Если вы послушаете старые mp3 файлы или плохие MIDI записи вы заметите, что вам сложно различать музыкальные инструменты, если они играют одновременно, они просто сливаются в «звуковую кашу» и разобрать в ней ничего невозможно.

Это происходит от того, что у записи узкий динамический диапазон . Чем он больше, тем более глубоким слышится звук, более приятным и реалистичным. Узкий динамический диапазон просто не позволяет разным инструментам, которые звучат одновременно, иметь различную громкость и один инструмент глушит другой, от этого возникает мутный неприятный звук и слушать такую музыку совершенно не хочется.

Низкая битность аудиозаписи виновата в узком динамическом диапазоне.

Теоретически за динамический диапазон отвечает битность звука во время его кодирования в цифровой вид . Чем выше битность, тем больше значений может принимать звуковая волна за единицу времени и тем шире может быть динамический диапазон. Но это в теории, т.к. это кроме битности на громкость могут влиять много других факторов и битность начинает влиять на динамический диапазон тогда, когда все другие факторы исключены.

Например, почти вся современная музыка выпускается со значительной компрессией , чтобы увеличить базовую громкость всего материала, от этого сильно страдает динамический диапазон, т.к. все тихие места композиции подтягиваются и становятся более громкими, а очень громкие пики инструментов срезаются до среднего значения. Таким образом, после процедуры компрессии уже почти не важно какой была битность записи. Но в том случае если вы слушаете качественный материал, который не испортили на студии, битность действительно начинает играть значительную роль в динамическом диапазоне.

Запомните, чем выше битность — тем больше значений записи уровня громкости звуковой волны записывается за единицу времени, и тем шире динамический диапазон.

Самое распространённое значение сегодня это 16 битная запись, но уже набирает популярность 24 битная музыка, а в скором времени в общее пользование начнут попадать 32 битные записи музыкальных произведений. При качественной обработки музыкального материала на студии и без ужасающей компрессии 16 битная точность записи, в общем, достаточна для того, чтобы не испытывать проблем с динамическим диапазоном.

Но в определении качества звука мы снова сталкиваемся с особенностями человеческого восприятия звука . Что такое 16 битная запись звука? Это значит, что одно измерение изменения амплитуды звуковой волны может принимать 65536 значений, что даёт нам динамический диапазон до 96,33 Дб. В свою очередь это означает, что звук с громкостью до 96,33 Дб должен быть записан без искажений по уровню громкости.

Если вы похожи на меня, то в большинстве случаев вы слушаете музыку в наушниках, а в наушниках довольно опасно долго слушать громкую музыку и, поверьте, 96,33 Дб это очень громко. Я стараюсь не превышать 60-65 Дб при прослушивании, этого вполне достаточно чтобы в полной мере насладиться звуком, но недостаточно чтобы повредить слух. И, как видите, у меня остается значительный запас по громкости до заветных 96,33 дб. По этой причине записи с 24 битной точностью для меня не дадут никакого преимущества, я просто не буду слышать разницы из-за того, что не слушаю музыку достаточно громко. Если кто-то из ваших знакомых, слушающий музыку в наушниках, говорит вам, что есть разница между 16 битной записью и 24 битной — не верьте ему. Он стал жертвой маркетинга и просто верит, что разница есть, хоть он её и не слышит. Добавим к этому тот факт, что наш слух имеет разную чувствительность по громкости к разным частотам звука, поэтому 16 битных записей для прослушивания в наушниках хватит для любых ситуаций.

16 битная запись позволяет записать громкость сигнала в виде 65536 значений, что даёт нам громкость уровня 96,33 Дб.

Так почему многие люди верят, что 24 битная запись музыки значительно превосходит 16 битную? Для некоторых ситуаций это действительно так. Например, если вы слушаете живую запись симфонического оркестра, вам действительно нужна 24 битная запись, т.к. вам придется значительно повышать громкость, чтобы услышать все нюансы. Вы повышаете громкость технически, на вашем устройстве, но та громкость, которую вы услышите будет нормальной, потому что записи симфонической музыки делаются довольно тихими как раз для того, чтобы можно было расслышать все нюансы звука. Но это правило не работает для современных записей поп музыки, т.к. уже на студии записи делают предельно громкими и если вы будете слушать её на той же громкости, что и качественную запись оркестра, вы просто рискуете повредить свой слух.

Также 24 битная запись подходит для записи звука. Гораздо эффективнее сделать запись в более высокой битности и потом, при финальной обработке снизить её до 16, чем наоборот. Если вы сделаете запись в 16 битах и потом искусственно увеличите её до 24, то качество будет даже ниже, чем при исходных 16 битах, а возможно и такое, что в звуке появится посторонний фоновый шум.

Каким должен быть битрейт?

Должно быть многие из вас замечали разницу в качестве звучания песен, если сначала вы слушали их на YouTube, а потом переключились на прослушивания CD или даже iTunes. Эта разница в качестве обусловлена битрейтом . Вообще, в повседневной жизни в 95% случаев качество записи определяет именно битрейт.

Как мы помним, битрейт это количество информации о звуковой волне, которую мы записываем за единицу времени, чаще всего за 1 секунду.

Вы же помните, что чем выше битность звука, тем больше информации нам нужно записать в единицу времени о каждом значении измерения амплитуды звука, тем больше нам нужен битрейт. Вот почему битрейт так важен, не имеет значения битность звука если у вас маленький битрейт, вы просто не сможете записать все необходимые данные для качественного воспроизведения.

Просто запомните — чем больше битрейт, тем выше качество звука. Вот так всё просто.

Для большинства случаев 320 Кб/Сек достаточно. Более того, большинство людей просто не заметят разницу, если будут слушать музыку с большим битрейтом.

Меня часто спрашивают каким должен быть битрейт для качественного звука? Я отвечаю — 320 Кб/Сек будет достаточно, при условии, что у вас 16 битная запись. Да, при прослушивании FLAC файлов с той же музыкой можно уловить разницу и FLAC будет звучать лучше, однако, для того чтобы эту разницу услышать вам нужны хорошие наушники и звуковая аппаратура, а также чтобы вокруг вас было тихо. Т.е. вам нужны хорошие домашние условия. Для дома я рекомендую музыку хранить в формате FLAC с более высоким битрейтом и битностью, но для любого мобильного использования (а большинство из нас музыку слушают именно на ходу) mp3 файла с битрейтом 320 Кб/Сек более чем достаточно. К тому же на вашем мобильном устройстве память ограничена и прослушивание mp3 отлично экономит её, либо ваш мобильный трафик если вы слушаете музыку с помощью стриминговых сервисов.

Так мне нужен ЦАП или нет?


Скорее всего нет, вам не нужен отдельный ЦАП . Единственная причина купить ЦАП сегодня заключается в том, что ваш компьютер, смартфон или домашняя аудиосистема не имеет его или в ваших устройствах используются старые и очень дешёвые встроенные ЦАПы, а качество звука при подключении любых наушников — ужасное. Тогда да, вам нужен ЦАП. Но если вы используете современное оборудование, то отдельный ЦАП вам не нужен, вы просто не услышите разницу.

Скорее всего нет, вам не нужен отдельный ЦАП.

Ещё одна причина приобрести отдельный ЦАП — вы собираете настоящую high-end звуковую систему, где каждый элемент должен быть безупречным. В этом случаев я согласен, вам нужен отдельный ЦАП.

В большинстве случаев вам будет достаточно того, что уже встроено в ваш телефон, планшет или ноутбук, современные ЦАПы достаточно хороши для того, чтобы вы не слышали заметных искажений звука и для 80% нашей аудитории я могу смело сказать — не покупайте ЦАПы, вы просто не услышите разницы.

Что такое ЦАП, зачем он нужен и с чем его едят, попытаемся рассмотреть в этой статье.

Данная статья скорее будет интересна любителям хорошего звука. Такого, который на порядок лучше\качественней того что вы слушаете в обыденном ритме. Но если вы вдруг начинаете чувствовать, что в прослушиваемой музыке чего-то не хватает, кажется что звуковая сцена не та, и вообще что-то с верхами или низами, хочется чего-то большего от любимой музыки, то поздравляем, вы .

Яркий пример аудиофила

Путь аудиофила начнём с такого прибора как ЦАП.

ЦАП (DAC) — цифро-аналоговый преобразователь. Устройство помогает преобразовать цифровой аудио сигнал в слышимый нами аналоговый.

Как это работает

Мы уже привыкли к тому, что нас окружают цифровые устройства. И внутри них протекают процессы не видимые человеческому глазу. Так и с цифровой музыкой. Какой бы она ни была, но в цифровом виде она представлена в виде последовательности битов, т.е. (1,0) единиц и нулей. Естественно такую информацию у нас не получится не услышать, не почувствовать. И на помощь на приходят ЦАПы. Они то установлены на всех цифровых устройствах которые способны воспроизводить звук.

Главная задача внешнего ЦАП — это улучшить качество звучания. Как уже было сказано, во всех цифровых устройствах ЦАП уже встроен, но он отличается своей простотой и не отвечает аудиофильским стандартам.

В первую очередь стоит задача по улучшению звука от . Ведь по сути ЦАП подключается как внешняя звуковая карта, но заметно более качественная.

Но это не единственный способ подключения. К ЦАП можно подключать игровые приставки, медиа- CD- DVD- плееры.

Подключение ЦАП

Естественно что все типы подключения к ЦАП будет цифровые, и как правило они снабжены такими входами:

— Оптический вход

— Разъем USB

— Вход AES

С выходами все проще, обычно это один стерео выход (RCA) и гнездо под наушники.

Разрядность и частота дискретизации

При записывании музыки в цифровом виде ей придаются определенные характеристики указывающие на ее качество. Такими и являются частота дискритизации — обозначает количество сэмплов в секунду и разрядность -количество бит или разрешение этих симплов. Естественно чем цифры по этим данным выше, тем качественнее звук.

Надо понимать, что лучшими по звуку будут форматы CD, FLAC, APE, WAV.

Тем самым при выборе ЦАП надо учитывать его характеристики, потянет ли он вашу музыку.

Как звучит ЦАП

На вкус и цвет товарищей нет. Так и с ЦАПом, важный критерий это звук. Т.е. сравнивать будем только по качеству звучания и по тому что вам нравится.

Различия могут быть в индивидуальном звуковом почерке, а его выбирать только вам.

P.S. ЦАП призван улучшать качество звука, но нужно понимать, что качественный звук будет только при наличии прочего качественного оборудования, таких как усилитель и акустическая система. Если прослушивать свой любимый трек в формате mp3 и на дешевых компьютерных колонках, но с использованием ЦАп, то увы, качественно новое звучание вам врятли откроется.

Post Views: 133